Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species.
نویسندگان
چکیده
Leaching is a mechanism for the release of nutrients from litter or senesced leaves that can drive interactions among plants, microbes, and soil. Although leaching is well established in conceptual models of litter decomposition, potential nutrient solubility of mineral elements from recently senesced litter has seldom been quantified. Using a standardized extraction (1:50 litter-to-water ratio and four-hour extraction) and recently senesced leaf litter of 41 tropical tree and liana species, we investigated how solubility varies among elements, and whether the solubility of elements could be predicted by litter traits (e.g., lignin, total element concentrations). In addition, we investigated nutrient forms (i.e., inorganic and organic) and ratios in leachate. Water-soluble elements per unit litter mass were strongly predicted by total initial litter element concentrations for potassium (K; r2 = 0.79), sodium (Na; r2 = 0.51) and phosphorus (P; r2 = 0.66), while a significant but weaker positive relationship was found for nitrogen (N; r2 = 0.36). There was no significant relationship for carbon (C) or calcium (Ca). Element-specific solubility varied markedly. On average 100% of total K, 35% of total P, 28% of total Na, 5% of total N, 4% of total Ca, and 3% of total C were soluble. For soluble P, 90% was inorganic orthophosphate. The high solubility of K, Na, and P as inorganic orthophosphate suggests that these nutrients can become rapidly available to litter microbes with no metabolic cost. Few common predictors of decomposition rates were correlated with element solubility, although soluble C (milligrams per gram of litter) was negatively related to lignin content (r2 = 0.19; P < 0.004). Solubility of elements was linked within a species: when a species ranked high in the soluble fraction of one element, it also ranked high in the solubility of other elements. Overall nutrient-specific patterns of solubility from recently senesced litter emphasize that litter elements cannot be treated equally in our conceptual and empirical models of decomposition. The relatively high potential solubility of P as orthophosphate from fresh litter advances our understanding of ecological stoichiometric ratios and nutrient bioavailability in tropical forests.
منابع مشابه
Interactions of Climate, Carbon, and Nutrient Cycling in Wet Tropical Forest
Tropical forests play a substantial role in the global carbon (C) cycle and are projected to experience significant environmental change, highlighting the importance of understanding the factors that control C and N cycling in this biome. Yet interactions between biogeochemical and abiotic variables, notably species diversity and precipitation, remain poorly resolved in the tropics. In a wet lo...
متن کاملLinking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using ...
متن کاملNutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest.
Microbial communities play a major role in terrestrial ecosystem functioning, but the determinates of their diversity and functional interactions are not well known. In this study, we explored leaf litter fungal diversity in a diverse Panama lowland tropical forest in which a replicated factorial N, P, K and micronutrient fertilization experiment of 40 × 40 m plots had been ongoing for nine yea...
متن کاملRain forest nutrient cycling and productivity in response to large-scale litter manipulation.
Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimu...
متن کاملLitter Production Dynamic in relation to Climatic Factors in Tree Plantations
We studied litterfall dynamic of tree plantations in Dez River floodplain, at 14 to 15 years old. The plantations consist of Populus euphratica Oliv., Eucalyptus camaldulensis Dehnh., E. microtheca F. Muell, Acacia farnesiana (L.) Willd., A. salicina Lindl., A. saligna (Labill.) H. Wendl., A. stenophylla Benth. and Dalbergia sissoo Roxb. Litterfall was different between the tree species, and le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2013